

Historization and Versioning of DDI-Lifecycle Metadata Objects

Findings in the STARDAT Project

5rd Annual European DDI Users Group Meeting Paris, 03.-04.12.2013

Alexander Mühlbauer GESIS – Leibniz Institute for the Social Sciences

Outline

- 1 STARDAT at a Glance
- 2 Modeling and Implementing DDI-Lifecycle
- 3 Use Case: Historization and Versioning (H&V)
- 4 Use Case: Import a Statistical Data File

Outline

- 1 STARDAT at a Glance
- 2 Modeling and Implementing DDI-Lifecycle
- 3 Use Case: Historization and Versioning (H&V)
- 4 Use Case: Import a Statistical Data File

Objectives

- Integrated management system for metadata
- Replacement for production systems DBK, DSDM, CBE
- Multi-language documentation on study and variable level
- Controlled vocabularies (Thesauri)
- Related publications, scales, trends and add. metadata
- Interfaces to portals like ZACAT, Cessda, Data Portal,
 Sowiport and da|ra
- Support of and high interoperability with standards like DDI-C and DDI-L
- Longterm-preservation with DDI

Outline

- 1 STARDAT at a Glance
- 2 Modeling and Implementing DDI-Lifecycle
- 3 Use Case: Historization and Versioning (H&V)
- 4 Use Case: Import a Statistical Data File

Principles for Analysis, Design and Coding My Guidelines for Daily Work

- Strict separation of modeling and mapping
 - avoids specific, not reusable implementations
 - allows use case specific, possibly different mappings
 - makes incompatibilties explicit
- Strict separation of model and representation
 - leads to true abstraction in memory
 - is the very necessary base for true interchangeability

Towards a GESIS DDI Architecture

Towards a GESIS DDI Architecture

Comparison of the Two Approaches

- Hierarchy (Inheritance)
 - $lue{}$ Technical infrastructure on organizational level (+)
 - Support of services out of the box (+)
 - Lower-level components must be true extensions (-)
 - Explicit definition of requirements for extensibility (-)
- Composite (Mapping)
 - Independence and flexibility in modeling (+)
 - Making incompatibilities explicit (+)
 - Re-implementation of components (-)

Towards a GESIS DDI Architecture

Implementation Challenge: Loss of Maintainables

My Guidelines for Daily Work

- Accept it!!!
- Extract it!
- Restrict it!
- Anticipate it!
- Contribute to abstract it!

Example: Label - Extract and Restrict It!

- DDI 3.1: Object may have **one** multi-lingual label
- DDI 3.2: Object may have **many** multi-lingual labels
- \Rightarrow Is it a critical requirement?

Example: Note - Anticipate It!

- DDI 3.1: Note is an Identifiable
- DDI 3.2: Note is not an Identifiable any more
- ⇒ Resolve DDI-L inheritance hierarchy on technical level!
 - Only distinction between Identifiable and Non-Identifiable
 - All types with domain responsibility are Identifiable

Example: Citation - Abstract It!

Outline

- 1 STARDAT at a Glance
- 2 Modeling and Implementing DDI-Lifecycle
- 3 Use Case: Historization and Versioning (H&V)
- 4 Use Case: Import a Statistical Data File

Use Case: Historization and Versioning

Definition: Historization

- is the technical process
- to keep track of change
 - which metadata objects changed
 - when
 - why
 - by whom
- within a transaction
- on attribute and relationship level;
- builds the foundation of *Versioning*.

Definition: Versioning

- is the business process
- to flag a given metadata object
- at a given revision with a version number
- according to the agency's versioning policy
- if possible with recommendation or automatically.

Use Case: Historization and Versioning

H&V Use Case: Revision View

 Show given revision, range of revisions or all revisions with included metadata objects

H&V Use Case: Resource View

■ Show given resource in current state and older revisions

H&V Use Case: Resource Diff View

■ Compare given resource between two selected revisions

H&V Use Case: DDI 3.1 Representation

```
-<ddi:DDIInstance agency="de.qesis" id="3971cd1c-b838-4bbe-aa80-e46deaa6207b" version="7" isPublished="false">
   <r:UserID type="11179-IRDI">de.gesis:3971cd1c-b838-4bbe-aa80-e46deaa6207b:7</r:UserID>
 -<g:ResourcePackage agency="de.gesis" id="e3de3bfd-6b18-46e3\98c5-5ebb272b8add" version="7"
   isPublished="false">
     <r:UserID type="11179-IRDI">de.qesis:e3de3bfd-6b18-46e3-98c5-5ebb272b8add:7/r:UserID>
   -<!:VariableScheme id="77f6e18b-7fc2-4995-900d-1f2ec91b2789" agency="de.gesis" version="7"
     isPublished="false">
       <r:UserID type="11179-IRDI">de.gesis:77f6e18b-7fc2-4995-900d-1f2ec91b2789:7/r:UserID>
     -<1:Variable id="0d9753ac-e194-40fc-920b-890858fc3ade" version="1.1.0">
        <r:UserID type="11179-IRDI">de.gesis:0d9753ac-e194-40fc-920b-890858fc3ade:6</r:UserID>
        <1:VariableName>VS1.V1</1:VariableName>
        <r:Label xml:lang="en">Confidence in parliament</r:Label>
        <r:Label xml:lang="de">Vertrauen in Parlament</r:Label>
       </l></l>/l:Variable>
     -<l·VariableReference>
        <r:ID>48201f56-da45-472c-8341-9eed0a916536</r:ID>
        <r:IdentifyingAgency>de.gesis</r:IdentifyingAgency>
        <r:Version>7</r:Version>
       </l>/I-VariableReference>
     -<1:Variable id="12a229d0-ef47-4e84-adfa-667dac634c62" version="1.1.0">
        <r:UserID type="11179-IRDI">de.gesis:12a229d0-ef47-4e84-adfa-667dac634c62:6
        <1:VariableName>VS1.V3</1:VariableName>
        <r:Label xml:lang="en">Confidence in schools and educational system</r:Label>
        <r:Label xml:lang="de">Vertrauen in Schulen und Bildungssystem</r:Label>
      </l></le>
     </l>VariableScheme>
   -<I:VariableScheme id="07816a2b-511a-406d-9e57-e82b6c141920" agency="de.qesis" version="7"
     isPublished="false">
       <r:UserID type="11179-IRDI">de.gesis:07816a2b-511a-406d-9e57-e82b6c141920:7
```

∢ロ▶∢御▶∢き▶∢き▶ き めぬぐ

-<1:Variable id-"48201f56-da45-472c-8341-9eed0a916536" version-"7">

H&V Use Case: Implementation Details

- Not an implementation image of the specification but close as possible to read and write DDI-L
- Java objects bundled as Maven Module
- Java Persistence API and Hibernate Envers annotations as persistence abstraction
- Hibernate as persistence provider

Note

- Revision number is a global identifier of repository state.
- Version number is not a property of a metadata class.

Object Identification

- { agency}:{identifier}:({revision}), e.g. de.gesis:3971cd1c-b838-4bbe-aa80-e46deaa6207b:7
- {agency}:{identifier}:{version}, e.g.
 de.gesis:3971cd1c-b838-4bbe-aa80-e46deaa6207b:2.0.0
- Identifier unique within the maintaining agency
- Revision as an ascending Integer
- Version as composition of ascending Integers separated by dots
- Separation of contents/concepts and identification

H&V Use Case: Base Class Identifiable

With Hibernate Envers Annotations

```
@Entity
@Audited
@Inheritance(strategy = InheritanceType, TABLE PER CLASS)
public class Identifiable
  @Id
  private String id:
  @Column
  private String agency;
  @Column
  private long lastModified:
  @ManvToOne
  private Identifiable parent;
  @PrePersist
  protected void cascadeLastModified()
    lastModified = RevisionContext.getInstance().getTimestamp();
   if (this.parent != null)
      this.parent.cascadeLastModified();
```


H&V Use Case: Entity Relationship Diagram

Generated by Hibernate Envers

_	REVTYPE:
	0: Created
	1: Modified
	2: Deleted

REV	ISIONENTITY
PK	<u>ID</u>
	USERNAME COMMENT TIMESTAMP

VERSIONENTITY			
PK	므		
	IDENTIFIABLE_ID REV VERSION TIMESTAMP		

REVCHANGES	
PK PK	REV ENTITYNAME

H&V Use Case: Prototype

- Read-only mode for inspecting the small demo use case
- See database tables and contents
- https://apps.codenomics.de/stardat-snoopy

Outline

- 1 STARDAT at a Glance
- 2 Modeling and Implementing DDI-Lifecycle
- 3 Use Case: Historization and Versioning (H&V)
- 4 Use Case: Import a Statistical Data File

Use Case: Import a Statistical Data File

Present Workflow and Implementation

- Statistical data file as content reference
- Only support of SPSS
- Import and iterative update of variable information
- Entities: Study, Variable, VariableValue
- All assoziations are compositions (no reuse)

Use Case: Import a Statistical Data File

Possible Future Workflow and Implementation

- Present workflow must be supported
- Also Documentation as content reference
- Entities: StudyUnit|ResourcePackage, Variable, Code, Category, LogicalRecord, PhysicalStructure, RecordLayout, DataItem and necessary schemes
- Some assoziations are compositions, some are aggregations (reuse by reference)

Use Case: Import a Statistical Data File Comparison

- More complex domain model (-/+)
- More comprehensively complying requirements (+)
- Different thinking about imports and iterative update required by reuse possibilities
- Very intuitive user interface needed to not get lost

Use Case: Import a Statistical Data File

Staged Reuse of Imported Variable Description

- Import all information without any (!) reuse (stage 1)
- Propose use of / Allow search for reusable items
 - within the dataset,e.g. code and category schemes (stage 2)
 - within project scope, e.g. variables (stage 3)
 - within agency scope,e.g. resource packages (stage 4)
 - beyond agency scope (stage 5)

Summary and Conclusion

- Object-relational modeling of DDI-Lifecycle is possible and may help to find suitable abstractions for future DDI versions.
- Hibernate Envers with JPA offers a nice solution to implement historization and versioning of DDI-Lifecycle metadata objects.
- Not only software tools, but (even simple) workflows and processes change fundamentally with the usage of DDI-Lifecycle.

Thank you! Any questions?

alexander.muehlbauer@gesis.org
GESIS – Leibniz Institute for the Social Sciences