
Working with the
STARDAT DDI-Lifecycle Library

6th Annual European DDI User Conference
London, 2014/12/01

Alexander Mühlbauer
GESIS – Leibniz Institute for the Social Sciences



Outline

1 Introduction

2 Architecture Principles

3 Implementation Principles

4 Exercises

5 Wrap-up



Outline

1 Introduction

2 Architecture Principles

3 Implementation Principles

4 Exercises

5 Wrap-up



Agenda



Introduction of Participants
What is your name? What is your affiliation?
What is your professional background?
What do you like most at your daily work right now?

How high would you rate your experience in DDI C/L?
Possible levels: beginner, junior pro, senior pro or guru
Are you familiar with Java, Spring, Hibernate,
Freemarker, Maven, Git, Eclipse?
What are your expectations of this tutorial?



Tutorial Objectives
After this workshop, you will be able to

download, compile and (re)use all source and binary code
of the library and demo application
understand the basic design principles of the library
create simple study descriptions
in the formats DDI 3.1 and DDI 3.2



STARDAT Project at a Glance
Integrated management system for standardized metadata
documentation
Replacement for production systems DBK, DSDM, CBE
of GESIS data archive
Support of and high interoperability
with DDI-C and DDI-L
Longterm-preservation with DDI



Classification of the Library
Open source,
Java-based,
extensible
domain model library
with object-relational persistence
to support DDI Lifecycle metadata documentation

Hybrid between Contract First and Code First!



Distinction of Design Principles
Architecture principles

Abstract, high level concepts
Technology independent
All-or-Nothing decisions

Implementation principles
Concrete, low level realisations
Technology dependent
Balancing priorities

Feedback appreciated!
Obviously, classification is ambiguous and criticisable!



Outline

1 Introduction

2 Architecture Principles

3 Implementation Principles

4 Exercises

5 Wrap-up



Separation of Model and Representation
Contract First – XML Schema-based Approach



Separation of Model and Representation
Hybrid between Contract First and Code First!



Separation of Model and Representation
Architecture Principle: SMORE

leads to true abstraction in memory
is the very necessary base for true interoperability
Example for mixing: Coverage



Separation of Model and Representation
ddi:Citation



Separation of Modeling and Mapping
Architecture Principle: SMOMA

avoids specific, not reusable implementations
allows use case specific, possibly different mappings
makes incompatibilties explicit
Examples for mixing

dcterms in ddi:Citation
Everything as ddi:Note
Creating a type PrimaryResearcher instead of explicitly
mapping information on ddi:Creator, ddi:Publisher or ...



Extensible object-oriented model



Extensible object-oriented model
Comparison of the Two Approaches

Hierarchy (Inheritance)
Technical infrastructure on organizational level (+)
Support of services out of the box (+)
Lower-level components must be true extensions (-)
Explicit definition of requirements for extensibility (-)

Composite (Mapping)
Independence and flexibility in modeling (+)
Making incompatibilities explicit (+)
Re-implementation of components (-)



Extensible object-oriented model
Implementation Challenge: Loss of Maintainables



Separation of Model and Validation
Architecture Principle: SMOVA

Validation requirements may differ relating
to agencies, projects, time and DDI versions
Usage of validation strategies for every resource
according to requirements
Domain model objects are only
data transfer objects (DTO).
Model invalidating constraints are rules of logic.
Model is structure, validation is process.



Container-managed transactions
Architecture Principle: CMT

Transaction management delegated to IoC container
Services as (a)synchronously executable units of work



Exercise 1
Getting the demo app run on your local machine

http://stardat.codenomics.de/historization-and-
versioning/getting-started
run it locally with mvn clean tomcat7:run



Outline

1 Introduction

2 Architecture Principles

3 Implementation Principles

4 Exercises

5 Wrap-up



Objects either of Type Resource or Property
Implementation Principle: ORP



Objects either of Type Resource or Property
Implementation Principle: ORP

A property must be associated
with only one, owning resource.
Any object which has Uniform Resource Names
is of type Resource.
Any object which is not of type Resource
is of type Property.
From persistence view Resource is an @Entity,
Property is a @MappedSuperClass.



Domain Semantic Objects of Type Resource
Implementation Principle: OSR

Distinction of identifiable, versionable, maintainable
objects not reasonable

ddi31:r:Abstract as identifiable, but never referencable?

A resource is
a doamin object
which is maintained by an agency
with identity
across the whole lifecycle.



Java Class Resource
with JPA and Hibernate Envers Annotations



Separation of Int. and Ext. Identification



Separation of Int. and Ext. Identification
Internal identification

Meet technical requirements
of persistence technology by primary keys
Efficient storage and querying by single-valued,
flat identifiers without any semantics

External identification
Meet business requirements of domain
by uniform resource names
Distributed resolution of multi-valued,
hierarchical identifiers with semantics



Separation of Historization and Versioning



Definition: Historization
is the technical process
to keep track of change

which metadata objects changed
when
why
by whom

within a transaction
on attribute and relationship level;
builds the foundation of Versioning.



Definition: Versioning
is the business process
to flag a given metadata object
at a given revision with a version number
according to the agency’s versioning policy
if possible with recommendation or automatically.

Note!
Revision number is a global identifier of repository state.
Version number is not a property of a metadata class.



Outline

1 Introduction

2 Architecture Principles

3 Implementation Principles

4 Exercises

5 Wrap-up



Exercise 1
Getting the demo app run on your local machine

http://stardat.codenomics.de/historization-and-
versioning/getting-started
run it locally with mvn clean tomcat7:run



Exercise 2
Reconstruct the historization & versioning show case



Outline

1 Introduction

2 Architecture Principles

3 Implementation Principles

4 Exercises

5 Wrap-up



Wrap-up
Download, compilation and (re)use of all source and
binary code of the library and demo application
Introduction into the basic design principles
First steps to create simple study descriptions
in the formats DDI 3.1 and DDI 3.2





Thank you!
Enjoy upcoming EDDI!

alexander.muehlbauer@gesis.org


	Introduction
	Architecture Principles
	Implementation Principles
	Exercises
	Wrap-up

