
Lessions-learned from Using DDI-

RDF Discovery Vocabulary
as Backend Model

EDDI14 – 6th Annual European

DDI User Conference

 Matthäus Zloch
matthaeus.zloch@gesis.org

PhD Student, M.Sc. CS

GESIS - Leibniz Institute for the Social Sciences

mailto:matthaeus.zloch@gesis.org

Levels of Lessions-learned

Abstract Model

Model Implementation

Abstract Persistence

Persistence
Implementations

2

Levels of Lessions-learned

Abstract Model

Model Implementation

Abstract Persistence

Persistence
Implementations

3 DDI-RDF Specification: http://www.ddialliance.org/Specification/RDF/Discovery

Levels of Lessions-learned

• Levels

• Views on data

• Statistics

4

Levels of Lessions-learned

Abstract Model

Model Implementation

Abstract Persistence

Persistence
Implementations

5

About Modeling in General

• Conceptual data model is developed

according to a requirements document

• Good practice: use abstract model and

extend it to own needs

6

About Persisting the Model

• The model shouldn’t be restricted to a

physical persistence type

• Persistence types exchangeable by

configuration

• Data model must not be driven by the

views of the application on your data

 7

Why we have chosen DDI-RDF
Requirements

• General enough as “native” application
model

• Separate model from application

– In order to be used in other projects

• Export easy

– No mapping to the standard schema

– Iterate through object-structure

8

DDI-RDF and JPA

• Implemented abstract model as Java classes

• Annotated with JPA

– Persistence model for object-relational mappings

– Can be used with any implementation of JPA

– Creates entity types on physical layer

– Should be a matter of configuration

• Focus on API design and code reuse

JPA Specification http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html 10

11

12

13

14

Levels of Lessions-learned

Abstract Model

Model Implementation

Abstract Persistence

Persistence
Implementations

15

Persistence Level

• Architecture you want to access your data

through

• Good practice to abstract method access

away from how you access data

• Business Level does not need to know

how the data is stored
16

18

19

Levels of Lessions-learned

Abstract Model

Model Implementation

Abstract Persistence

Persistence
Implementations

20

DDI-RDF and JPA

• JPA annotations

– Can be used with any implementation of JPA

to materialize the model

21

…

…

…

22

23

Storage Types

• Implementation of model classes is highly

hierarchical

• How does the storage type save the data?

24

25

Storage Types

• Relational Database – Tables

– Use InheritanceType.JOINED

– Use InheritanceType.SINGLE_TABLE

• Graph Database – Nodes

• RDFStore – Triples

26

Example: Relational Database

• One table for each @Entity

– Clean database

– Many (unnecessary) tables involved in query

– Updates affect several tables

FROM

 missy_variable, variable, concept, resource,

 missy_logicalDataSet, logicalDataSet, resource, logicalDataSet_variable

 missy_study, study, resource, study_logicalDataSet

27

Levels of Lessions-learned

• Levels

• Views on data

• Statistics

28

29

Views on data

• Specific parts of a model

– Project specific

– Use case specific

• Good practice: create views on the
physical level with the introduction of new
entities

30

Levels of Lessions-learned

• Levels

• Views on data

• Statistics

31

Functional Statistics

 • StudyGroup 5

• Study 50

• LogicalDataSet 90

• Countries 33

32

CategoryStatistics 1,3M

SummaryStatistics 290 TSD

Variable 12 TSD

Document 5 TSD

Question 2,7 TSD

Technical Statistics

• Intel XEON 2,6Mhz, 2GB RAM, 40GB HDD

• MySQL default installation on Debian 6

• 1GB HDD space usage by MySQL

• 150 Tables

33

Conclusions DDI-RDF

• DDI-RDF after standardisation, is ready to be
implemented

– As back-end model in different projects

– With different persistence types

• Open Source frameworks provide many ways
to get your data persisted

• It is possible to generate a framework for
disco that may be extended

34

Conclusions Code-Reusage

• Do not create isolated, project specific

software

• Create (software) pieces that are reusable

• Reuse other software pieces and/or

customize it to your own needs

35

Contribute and Share

• Go to

• Download

• Discuss and Contribute

36

Matthäus Zloch
matthaeus.zloch@gesis.org

PhD Student, M.Sc. CS

GESIS - Leibniz Institute for the Social Sciences

mailto:matthaeus.zloch@gesis.org

