
DDI 3.2 INTEROPERABILITY 

AND BEST PRACTICES 

 

THE STORY BEHIND DDI 3.2 

EDDI 2014 : December 2nd 2014 



In This Talk 
2 

 3.2 Technical Committee Goals 

 A focus on consistency 

 Design and content guidelines 

 Automated Testing 

 Identification improvements 

 3.2 Serialization Improvements 

 New serialization container 

 Single serialization location for items 

 Aligned with DDI 4 xml serialization and views 

 

 



A focus on consistency 
3 

 For 3.2, the technical committee outlined a set of 

design and content guides 

 These practices were already used in 3.1, but not 

followed throughout the schema 

 Used the 3.2 development process to make sure 

practices were followed 

 This was the TC’s main work following the public 

review 



Key focus on 
4 

 Ensure items and properties were uniquely named 

 Make sure elements were reused where 

appropriate 

 Remove most mandatory properties 

 Cardinality was relaxed to 0..1 or 0..n 

 Ensure child items were always able to be 

referenced 

 3.1 sometimes required inline inclusion 



Automated testing of the schema 
5 

 Many improvements were made through manual 

investigation of the schema, but completeness is 

required 

 A tool was created to perform consistency checks on 

the schema 

 Ensured that the technical committees consistency 

goals were realized 

 Open Source 

 https://github.com/DanSmith/DDISchemaCheck/ 

https://github.com/DanSmith/DDISchemaCheck/
https://github.com/DanSmith/DDISchemaCheck/
https://github.com/DanSmith/DDISchemaCheck/


Automated testing checks (I) 
6 

 Check compilation of the schema as an XML Schema Set. 

 Versionables and Maintainables allowing inline or reference 
usage. 

 Versionables and Maintainables are in a xs:Choice. 

 Versionables and Maintainables in a xs:Choice contain two 
elements. 

 Versionables and Maintainables in a xs:Choice contain a 
xxxReference. 

 FragmentInstance contains all Versionables and 
Maintainables. 

 Type of Object for references 

 Duplicate Element names detected for referenceable types. 

 Element names detected without a TypeOfObject defined. 

 

 



Automated testing checks (II) 
7 

 Spell checking 

 Element names 

 Attribute names 

 XSD annotations/documentation 

 Breaking apart CamelCasedWords 

 Allows words to be added to dictionary 

 Uses en-US 

 Highlighting of misspellings in generated reports. 

 Proper spelling in the standard and documentation 
gives a professional feel 

 

 



Automated testing checks (III) 
8 

 Example Report 

 DDI Schema Test Report Sample 

 

 

http://cdn.colectica.com/version1.0.sample.html


Identification updates 
9 

 In DDI 3.1, identification of some items were tied to 
the identification of a parent item in the information 
model 

 Made reuse of items overly complicated 

 In 3.2, identifier scoping is well defined 

 Unique within an agency scope 

 Backwards compatible with 3.1 system 

 Previously unique within parent identifiers result in a 
concatenated id 

 Also unique within an agency scope 



The Results 
10 

 Five years of development results in DDI 3.2  

 The most consistent version of the standard 

 Adherence to defined patterns 

 Automated testing 

 Many small consistency improvements combine to 

enable better serialization of the information 

model 

 Lets compare the XML serialization capabilities of 

DDI 3.1 and 3.2 



Old Serialization Style 
11 

 In Instances, where are items concretely located? 

 Variables 
 DDIInstance\ResourcePackage\VariableScheme\Variable 

 DDIInstance\ResourcePackage\LogicalProduct\VariableScheme\Variable 

 DDIInstance\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\Group\LogicalProduct\VariableScheme\Variable 

 DDIInstance\Group\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\Group\SubGroup\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\Group\SubGroup\SubGroup\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\Group\SubGroup\*\SubGroup\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalGroupContent\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalGroupContent\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalGroupContent\SubGroup\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalGroupContent\SubGroup\*\StudyUnit\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalStudyUnitContent\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalResourcePackageContent\LogicalProduct\VariableScheme\Variable 

 DDIInstance\LocalHoldingPackage\LocalAddedContent\LocalResourcePackageContent\VariableScheme\Variable 

 With SubGroups, the number is actually unlimited. 



Old Serialization Style (2) 
12 

 This issue occurs for all item types in DDI 

 Tight coupling of the Information Model and the 

Serialization Format created the problem 

 Profiles? 

 Allows users to document their usage 

 Must be exchanged, and implemented 

 Do not address the main serialization issue within the 

standard, which still leaves interoperability challenges 



Three Key Enablers for Serialization 
13 

 Concise Bounded Descriptions 

 http://www.w3.org/Submission/CBD/ 

 In 3.1 where items were nested inline, they are now also 
available via reference 

 3.2 schema was programmatically checked before release 
to ensure reference availability 

 Min Occurs is zero 

 Most elements are now optional 

 Resolution of DDI identification issues 

 Decouple item hierarchy from item identity 

 Allows agency scoped ids for all items 

 

http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/


Serialization Solution in 3.2 
14 

 Eliminate the tight coupling of the Information 

Model and the Serialization 

 Solution – 3.2 FragmentInstance 

 Limit locations for concrete items, and use references 

 Implemented in DDI 3.2 as alternative container 

 Create views using TopLevelReferences 

 Only implementation pattern in DDI 4 

 Each item type has a single location (Xpath) 

 FragmentInstance\Fragment\Variable 



Serialization Solution in 3.2 (2) 
15 

DDIInstance FragmentInstance 

Nesting mixes object 

model and serialization 

Uniform item serialization 



Serialization Solution in 3.2 (3) 
16 

 Each item type has a single location (Xpath) 

 FragmentInstance\Fragment\Variable 

 Improvement in application interoperability 

 Each serialized item (maintainable or versionable) 

includes its child items using a reference 

 Implements Concise Bounded Descriptions 

 References include item type 

 Reference resolution is simplified, only one possible 

location for each concrete item type 

 

 



Thank you 17 

Web colectica.com 

Blog blogs.colectica.com 

Twitter @Colectica 

YouTube youtube.com/colectica 


