

Building a Harmonized Data Market for Longitudinal Data with MIDUS and DDI (3.2)

Overview of Presentation

- Background on MIDUS
 - Importance of DDI for
 - Harmonization
 - Facilitating complex analysis
- Current Project's Goals
- Implementation of Project Goals
 - Creating MIDUS DDI 3.2 Instances
 - Upgrading MIDUS-Colectica Repository/Portal

MIDUS

Advancing Knowledge of Factors That Promote Positive Health and Resilience Baseline: 1995-96

- Harvard
- MacArthur Found.
- N=7,108
- Ages 25-74
- Twins/Siblings

MID-LIFE IN THE UNITED STATES A National Study of Health and Well-Being

Unique
Strengths
of the
MIDUS
Study

In-depth multidisciplinary content achieved via 5 separate data collection projects

Wide age range (25-74) facilitates focus on life course transitions

MIDUS (Midlife in the U.S.) is a national longitudinal study of how many factors (behavioral, social, psychological, biological, neurological) come together to influence health and well-being as people age from early adulthood into midlife and old age. It was conceived by a multidisciplinary team of scholars interested in understanding aging as an integrative process.

MIDUS Samples

In 1995, MIDUS survey data were collected from a total of 7,108 participants. The baseline sample was comprised of individuals from four subsamples: (1) a national RDD (random digit dialing) sample (n=3.487): (2) oversamples from

In addition, the twin subsample was administered a short screener to assess zygosity and other twin-specific information.

With funding provided by the National Institute on Aging, a longitudinal fol-

MIDUS: Strengths and Complexities

Multiple sample waves (longitudinal)

MIDUS Samples and Timelines

MIDUS Samples and Timelines

MIDUS: Strengths and Complexities

- Multiple sample waves (longitudinal)
- Multiple cohorts

MIDUS Samples and **Timelines**

(N=1,032)

MIDUS Samples and Timelines

Multiple Longitudinal Sample Cohorts

1995 2005 2015

MIDUS: Strengths and Complexities

- Multiple sample waves (longitudinal)
- Multiple cohorts
- Multidisciplinary design
 - Aging as integrated bio-psycho-social process

PROJECT 1

(SURVEY OF A NATIONAL SAMPLE)

Assessed a wide array of psychological constructs (e.g., personality, psychological well-being, positive and negative affect, sense of control, goal orientations) and demographic characteristics (e.g., gender, marital status, socioeconomic standing, employment status), along with extensive health measures (mental and physical).

MODE: 30-minute Phone Interview and Two 50-page Self-Administered Questionnaires

THE MIDUS II PROJECTS

PROJECT 2

(Daily Diary Study)

8 days of daily experience obtained via phone interviews.

(e.g., time use, physical health symptoms and substance use, work productivity, psychological distress)

4 days of salivary cortisol

PROJECT 3

(Cognitive Functioning)

Phone-based cognitive battery

(e.g., episodic verbal memory, working memory, verbal ability and speed, fluid intelligence/reasoning, speed of processing, episodic verbal memory/forgetting)

Face-to-face assessment of cognitive capacities

PROJECT 4

(Biomarkers)

2-Day Clinic Visit: Biomarkers—neuroendocrine, cardiovascular, immune, bone

Physical exam

Medical history

Medications

Sleep assessments

Laboratory challenge study—heart-rate variability, blood pressure, cortisol

PROJECT 5

(Neuroscience)

Affective reactivity & recovery:

- baseline electroencephalography (EEG)
- task-related EEG
- task-related electromyography (EMG; eyeblink startle response, post auricular startle reflex, corrugator supercilli activity)
- structural MRI of neuroanatomy
- task event-related fMR1

MIDUS: Strengths and Complexities

- Multiple sample waves (longitudinal)
- Multiple cohorts
- Multidisciplinary design
 - Aging as integrated bio-psycho-social process
- Wide use of MIDUS Open Data philosophy
 - #1 data download at NACDA
 - Top 10 data download at ICPSR
 - 500 publications

Current DDI Efforts

MIDUS Metadata Repository/Portal

http://midus.colectica.org/

Current Project goals

Under a DDI rubric...

1. Harmonization (internal)

- Clarify related nature of longitudinal and cross-cohort variables (improving search function)
- Provide information/procedures for reconciliation

2. Customized Data Extract (CDE)

- Allow researchers to focus on variables of interest
- Facilitate accurate merges across numerous datasets

Harmonization

Show all downloads...

Harmonization

- Concordance table
 - Includes "Comparability notes" and "Comparability class"
 - Example: Variable A1PA30 "time since last BP test"
 - "M1 is not directly comparable with M2, MKE, MR, MKER, M3: M1 responses were coded as number of months, while other waves broke out number and unit separately."
 - Offer code/algorithm for reconcilation

Custom Data Extract

- Customized dataset
 - Search variables, use shopping basket
 - Allow variables from across MIDUS
 - Merge different datasets
 - Different formats (csv, SPSS, SAS, Stata)
 - Associated DDI codebook

Development Milestones

- 1. Metadata Quality Report
- 2. Harmonization
- 3. Web-based Discoverability
- 4. Data Extraction

Step 1. Metadata Quality Report

- Compare the harmonization spreadsheet to the Repository
- Check for:
 - Missing information
 - Inconsistent labels
 - Inconsistent data types
- Update the metadata to improve quality

Step 2. Harmonization

- Use the harmonization spreadsheet
- □ Create a RepresentedVariable for each row
- Store these in the repository

Step 3. Web-based Discoverability

- Build on top of Colectica Portal
 - Searching and information retrieval out-of-the-box
- Add cross-reference tables for easy discoverability
- Choose variables or groups of variables to include in the data extract

Step 4. Data Extraction

- Store master data in Colectica Repository
- Based on a user's selected variables, generate:
 - Datasets
 - CSV, R, SAS, SPSS, Stata
 - HTML and PDF codebooks
 - DDI XML

Progress

✓ Complete	Metadata Quality Report
In Progress	Harmonization
Upcoming	Web-based Discoverability
Upcoming	Data Extraction

Thank you

Barry Radler — UW-Madison (bradler@wisc.edu)

Jeremy Iverson — Colectica (jeremy@colectica.com)

Dan Smith-Colectica (dan@colectica.com)

midus.wisc.edu

www.colectica.com

